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Subtelomeric rearrangements of dysmorphic children with 
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Subtelomeric rearrangements are an important cause of both sporadic and 
familial idiopathic mental retardation (MR) and/or congenital malformation 
syndromes. We report on a cohort of 107 children with idiopathic MR and 
normal karyotype 450–550 band level by GTG banding screened for subtelomeric 
rearrangements by multiprobe fluorescence in situ hybridization (FISH). In 
these cases, five patients had de novo deletions (1p deletion was found in 
2 cases; 3q deletion, 9p and 9q deletions were found in 1 case each) and 
four patients had unbalanced rearrangements [der(5)t(5;15)(pter;qter)pat in 2 
patients who were siblings, rec(10)dup(10p)inv(10)(p13q26)mat in 1 patient 
and der(18)t(18;22)(qter;qter) de novo in 1 patient].

Our study confirms that the subtelomeric rearrangements are a significant 
cause of idiopathic MR with dysmorphic features.

Key words: mental retardation, fluorescence in situ hybridization, subtelomeric FISH.

Mental retardation (MR) affects approximately 
1.2% of the population, and its cause is 
unexplained in the majority of cases1. An 
important cause has been shown to be 
chromosomal rearrangements, reported in up 
to 40% of individuals with severe MR and in 
only 5-10% of patients with mild MR2-4.

The subtelomeric regions are believed to be 
the most gene-rich regions of the genome 
and are susceptible to copy number changes, 
owing to repeat-rich sequences that show 
a high frequency of recombination. Because 
the telomere regions of the chromosomes 
are G-band negative and morphologically 
similar, a number of techniques have been 
applied for subtelomeric screening such as 
fluorescence in situ hybridization (FISH) 
with subtelomere probes, high resolution 
comparative genome hybridization (HR-CGH), 
multiple ligation probe amplification (MLPA) 
and array CGH5. It is now clear that unbalanced 

cryptic subtelomeric rearrangements resulting 
in segmental aneusomy and gene-dosage 
imbalance are a significant cause of idiopathic 
MR and congenital anomalies2,6,7. The incidence 
of cryptic subtelomeric chromosomal aberrations 
remains unclear, although it ranges from 2 to 
29% of moderate or severe MR cases in some 
studies4,5.

The aim of our investigation was to detect 
the incidence of subtelomeric abnormalities in 
children with idiopathic MR and to compare 
the clinical phenotype in our patients to those 
in the literature.

Material and Methods

Study Population

In this study, we investigated 107 patients with 
idiopathic MR who admitted to the Pediatric 
Genetic Division of Akdeniz University School 
of Medicine between 2003 and 2008. A few 
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patients had developmental delay in the first 
application and follow-up revealed MR by age- 
related tests. If the patient’s age was below 
six years, we used Goodenough-Harris drawing 
test. For those above six years, Wechsler 
Intelligence Scale for Children Revised test 
was used. An intelligence quotient (IQ) score 
below 70 was used as MR criterion for age-
appropriate applicable patients.

All the patients were preselected by clinical 
geneticists using the five-item checklist of De 
Vries et al.6. The checklist includes: 1) Family 
history of MR, 2) Prenatal growth retardation, 
3) Postnatal growth abnormalities, 4) ≥2 
facial dysmorphic features, and 5) ≥1 non-
facial dysmorphic features and/or congenital 
abnormalities. All of the patients should have 
had at least four of these criteria and a normal 
karyotype on the GTG-banded cytogenetics at 
the 450-550 band resolution. We ruled out 
recognizable syndromes and metabolic diseases 
in patients as the etiology of MR.

Cytogenetic and FISH Studies

Metaphases were prepared from peripheral 
blood lymphocytes according to standard 
cell cultures techniques. Chromosomes were 
analyzed using GTG banding 450-550 band 
resolution levels according to ISCN 20058. For 
each patient, a minimum of 20 metaphases 
were analyzed.

Fluorescence in situ hybridization (FISH) 
studies of the subtelomeric regions were 
performed using Chromoprobe Multiprobe-T 
System kit (Cytocell, UK) according to the 
protocol recommended by the manufacturer. 
Hybridized metaphase spreads were analyzed 
using Zeiss Axioplan 2 epifluorescence 
microscope. Images were captured by CCD 
camera and analyzed using an imaging system 
with MacProbe software v.4.1. For each 
chromosome, at least five metaphases were 
examined. More than 10 cells were analyzed for 
the particular chromosome if an aberration was 
detected. In all positive cases, the karyotype was 
also analyzed retrospectively by conventional 
cytogenetic study.

When positive cases were detected, FISH 
analyses with subtelomeric probes were 
performed in the proband’s parents and in the 
relatives with idiopathic MR and dysmorphic 
features. In those patients who were shown 

to have subtelomeric rearrangements, written 
informed consent was provided for medical 
presentation.

Results

In this study, we analyzed 107 children who 
had normal karyotype by GTG banding 
using subtelomeric region-specific FISH 
probes. Each patient had idiopathic MR and 
dysmorphic features. Subtelomeric chromosomal 
rearrangements were detected in 9 of 107 (8.4%) 
patients (2 of them were siblings). Except for 
one case, retrospective cytogenetic analysis 
of all FISH-positive patients was normal. We 
investigated parental subtelomeric chromosomal 
regions by FISH, using subtelomeric region-
specific probes. The subtelomeric chromosomal 
rearrangements were found to be familial in 
three patients, two of whom were siblings. In 
all others, the chromosomal rearrangements 
appeared to be de novo. The clinical and FISH 
findings of 9 patients are presented in Table I. 
Facial appearances of the patients are shown in 
Figure 1 and FISH images of the patients are 
shown in Figure 2.

Discussion

Cryptic unbalanced subtelomeric rearrangements 
represent a significant cause of MR associated 
with congenital anomalies. Despite a number of 
studies, the prevalence of these rearrangements 
in clinic populations remains unclear9,10. 
According to clinical inclusion criteria and 
the size of the study populations, the incidence 
ranges from 2% to 29% in developmental delay 
populations5,6. We previously reported the 
frequency of the subtelomeric rearrangements 
as 20% in a smaller study11. In the present 
study, all patients (n=107) were selected by 
clinical geneticists using the five-item checklist 
provided by de Vries et al.6. We found eight 
different subtelomeric rearrangements in nine 
patients, and the prevalence of subtelomeric 
chromosomal rearrangements was found to 
be 8.4%. Our results confirm that a clinical 
checklist can improve the detection rate of 
cryptic subtelomeric chromosomal aberrations 
in the subtelomeric FISH studies. Until 
recently, multiprobe FISH was used to detect 
deletions and duplications in the patients 
with balanced or unbalanced chromosomal 
rearrangements. However, it was recognized 
that using multiprobe FISH for the screening led 
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Fig. 1. Overview of nine cases.

Fig. 2. FISH images of the subtelomeric rearrangements 
described in this study: (1 and 2) 1p subtelomere 

deletion; (3) 3q subtelomere deletion; (4) 9p 
subtelomere deletion; (5) 9q subtelomere deletion; 
(6a) monosomy of subtelomeric region of 5p; (6b) 

trisomy of subtelomeric region of 15 q; (7a) trisomy 
of subtelomeric region of 5 p; (7b) monosomy 

of subtelomeric region of 15q; (8) duplication of 
the subtelomeric region of 10p (9a) monosomy 
of subtelomeric region of 18q; (9b) trisomy of 

subtelomeric region of 22q.

to a considerably high rate of false positivity12. 
Hence, Park et al.12 suggested that if any cryptic 
subtelomeric anomalies were found using 
multiprobe FISH, this rearrangement should be 
confirmed using single probe FISH with specific 
targeting. However, in our study, we did not 
perform single probe FISH for confirmation. 
There are a few methods that can be used 
such as comparative genome hybridization, 
MLPA and microsatellite marker analysis4. 
Even if these methods may be more sensitive 
than multiprobe FISH, they can only define 

unbalanced rearrangements, while multiprobe 
FISH method can define both balanced and 
unbalanced rearrangements, making it a more 
advantageous method.

The frequency of the deletion of short arm of 
chromosome 1 (1p36) is known as recurrent 
chromosomal microdeletion syndrome13,14. 
Deletion of this chromosomal band can be 
difficult to detect by GTG banding. Our two 
patients had findings consistent with the 
most characteristic dysmorphic features of 
1p deletion (Table I)14-16. In the literature, 
hydrocephalus and hearing loss were noted 
frequently in monosomy 1p15. However, our 
cases had non-communicating hydrocephalus 
without hearing loss.

A subtelomeric deletion of chromosome 3q 
was present in one case. Thus far, only eight 
cases of 3q microdeletion syndrome have been 
reported17-19. Our case has MR, dysmorphic 
features and microcephaly (Table I), similar 
to the reported cases.

Trigonocephaly and upward-slanting palpebral 
fissures are usually noted in patients with 9p 
deletion syndrome20, and these findings were 
present in our case (Table I). Variable types 
of congenital heart disease such as ventricular 
septal defect (VSD), patent ductus arteriosus 
(PDA) and pulmonic stenosis (PS) are reported 
in one-third to one-half of patients with 9p 
deletion syndrome21. Our case had an isolated 
atrial septal defect (ASD).
Until now, 22 patients have been reported 
with a cryptic subtelomeric deletion of 9q. 
It has been suggested that microdeletion 
9qter represents a novel MR syndrome. The 
minimum critical region responsible for 9q 
subtelomeric deletion syndrome (9q-) is 
approximately 1.2 Mb and encompasses at 
least 14 genes. Some striking similarities 
between cytogenetically visible 9qter deletion 
and a subtelomeric deletion of 9q suggest the 
presence of a common critical region in the 
subtelomeric domain22,23. Our case (Case 5) 
had all of the clinical findings observed with 
9q deletion (Table I), and also had minimal 
tricuspid and mitral valve insufficiency.
The occurrence of subtelomeric chromosomal 
rearrangements can be de novo or can be 
derived from familial translocations. In this 
study, we detected a cryptic familial unbalanced 
translocation between subtelomeric regions of 
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chromosome 5p and 15q, inherited from their 
father, in two siblings. In approximately 90% 
of patients, 5p deletion occurs de novo, and 
in 10%, it results from a parental balanced 
translocation24-26. In one of the two siblings, 
partial monosomy for subtelomeric region 
of chromosome 5p and partial trisomy for 
subtelomeric region of chromosome 15q 
resulting from inheritance of chromosomes 
derived from a paternal balanced translocation. 
Our case had clinical findings characteristic of 
5p deletion syndrome (Cri-du chat). In addition, 
she had fusion on the 2nd-3rd cervical vertebrae. 
This finding in monosomy 5p is the first in 
the literature. The other sibling had a partial 
trisomy for subtelomeric region of chromosome 
5p and partial monosomy for subtelomeric 
region of chromosome 15q. To our knowledge, 
partial trisomy of subtelomeric region of 5p 
has not been reported before. This patient had 
some dysmorphic features (Table I).
Distal deletions of the terminal long arm of 
chromosome 15 have been rarely described. 
Only five patients with pure terminal 15q 
deletion have been reported in the literature27. 
All of the 15qter deletion cases and ours had 
similar dysmorphic features. Prenatal and 
postnatal growth retardation related to the loss 
of one copy of the IGF1R gene was present in 
all the 15qter deletion cases and our patient. 
The IGF1R gene localizes in the 15q26.3. IGF1 
receptor is a transmembrane tyrosine kinase 
receptor that transduces signals corresponding 
to IGF1 and IGF2. It is well known that IGF1 
plays a key role in growth development27.
Several patients have been reported with terminal 
10p duplication/10q deletion resulting from 
inheritance of a recombinant chromosome 
derived from a maternal pericentric inversion28,29. 
The clinical findings of dup(10p)/del(10q) 
syndrome are more similar to dup(10p) 
syndrome than to del(10q) syndrome. Some 
authors report that hypotonia, high-arched/cleft 
palate, frontal bossing, clubfoot, and nasal 
abnormalities are described in 50% or more of 
the cases. Dolichocephaly, wide sutures, frontal 
bossing, micro/retrognathia and renal defects 
are frequently seen in patients with dup(10p)/
del(10q)28. We detected duplication of 10p13→
pter and deletion of 10q26→qter in one patient 
whose clinical findings were consistent with a 
case reported by Nomoto et al.30 with duplication 
10p13→pter.

In one patient, we detected a cryptic unbalanced 
de novo translocation between subtelomeric 
regions of chromosome 18q and 22q. This 
translocation resulted in a partial monosomy 
for subtelomeric region of chromosome 18q 
and partial trisomy for subtelomeric region of 
chromosome 22q. Terminal deletion of long 
arm of chromosome 18 is a well-characterized 
deletion syndrome. Our case had all of the 
findings with partial trisomy 22 (Table I). In 
addition, our patient had ASD defect, which 
is not a classical cardiac finding with partial 
trisomy 2231.

In summary, our study confirms that the 
defined clinical selection criteria for the pre-
selection of children with idiopathic MR and 
dysmorphic features leads to a diagnostic yield 
of about 8.4% for subtelomeric alterations. In 
both familial and sporadic cases, the detection 
of subtelomeric rearrangements is of great 
importance in offering genetic counseling and 
prenatal diagnosis. Regardless of whether the 
use of telomeric FISH may be replaced by CGH 
array technologies, subtelomeric deletions, 
if detected, will continue to account for a 
significant proportion of diagnoses made in 
this clinical population.
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